
Searching information sources based on the Semantic
Web

Mark Ingram and Weiru Liu

School of Computer Science
Queen’s University Belfast

Belfast, Co Antrim BT7 1NN, UK

Abstract. With the vision of the Semantic Web being grasped and realised more
and more, the number of information sources that are available in the Semantic
Web format is fast growing and will continue to do so in an exponential way.
With this exponential growth in the number of information sources on the Se-
mantic Web, it is necessary to be able to search through them automatically for
desirable information. This paper presents a preliminary implementation of a se-
mantic search engine for use on the Semantic Web. It makes use of an ontology
mapping method that exploits the equivalence of concepts and examines the sub-
string makeup of each subject, predicate and object in the source ontologies.

1 Introduction

1.1 The need for a search engine on the Semantic Web

No one doubts the tremendous success the World Wide Web (the Web) has enjoyed in
recent years. One element of the Web’s success is that it allows easy access to informa-
tion on practically any topic. All a user has to do is navigate to a search engine with
keywords indicating what is being searched. The search results contain links to web
pages where the user’s keywords appear. The Web’s success has also brought it down a
path with many stumbling blocks, one of them stems from the Web’s worldwide utilisa-
tion. Just as translators or a common language are required for people from around the
world to communicate effectively, so translators or a common language are required for
effective communication and processing on the Web.

For example, in the UK apostcodeis included in an address but in the USA the
equivalent concept is called azipcode. Still somewhere else the concept may be called
anarea code. If a user enteredpostcodeinto a search engine, the search engine would
return a set of results with links to pages where the exact keywordpostcodewas found.
The results set would not contain the pages wherezipcodeor area codewere used in
place ofpostcode. This is an example of keyword-based searching and is a method of
searching that wholly disregards semantics.

The Semantic Web aims to add meaning to content stored on the Web. It is an
extension of the current Web. Based on the Semantic Web, searching should be more
intelligent. With the Semantic Web, ontologies can be defined that describe formally
and explicitly what the concepts contained in a Web page mean. Axioms can be used
explicitly to state the truths about information, such as conceptpostcodeis equivalent

to conceptzipcode. A search with keywordpostcodebased on the Semantic Web should
return Web pages containing wordzipcodetoo, since these two concepts are equivalent.

The first step is to develop a commonly acceptable ontology language for the Se-
mantic Web.

1.2 Semantic Web languages

An ontology describes a domain of discourse in a formal way. An ontology is a finite
collection of concepts that are fundamental in a domain of discourse. The ontology will
also describe the relationships between these concepts.

An ontology consists of a set of concepts,C, that are arranged in a hierarchical
fashion much like a taxonomy,HC , with relationships existing between individual con-
cepts,RC . Relationships, too, can be arranged in a hierarchy,HR . Instances of specific
concepts,I, are interconnected by specific relationship instances,RI . It is also possible
to define axioms,A, that can be used to infer knowledge from existing statements. For
an extended definition of this view of an ontology, please read [Stu03].

There are several commonly accepted ontology languages so far, such as, DAML+OIL,
OWL, etc. They are all built on RDF and RDFS [MMM04]. RDF (Resource Descrip-
tion Framework) is an abstract data model for describing resources. It has been designed
in such a way so as to allow vocabularies to be layered on top of it, e.g. RDFS (RDF
Schema). Being an abstract data model, RDF needs a concrete syntax so that it can be
used and processed by software programs. Furthermore, it is much easier to represent
information in RDF in the abstract form of node and directed arc graphs, where nodes
are either resources or values, and directed arcs are properties.

Every arc in an RDF abstract data model represents astatement. A statement asserts
a fact about a resource and has three parts: asubject-predicate-objecttriple. The subject
is the resource from which the arc leaves. The predicate is the property that labels the
arc. The object is the resource or literal to which the arc points. An RDF abstract data
model is a set of statements i.e. a set of subject-predicate-object triples. With RDFS,
one can define the vocabulary, specify which properties apply to which kinds of objects
and what values they can take, and describe the relationships between objects. RDFS
brings to the fore the semantics of the information held in RDF. Not only that, RDFS
makes the semantics of information held machine-processable.

In our project, the ontology modelling language of choice is OWL. This is cur-
rently becoming the de facto standard in ontology modelling languages, superseding
its mother-language, DAML+OIL. OWL is built upon the RDF and RDFS and further
adds to the vocabulary set of both RDF and RDF Schema. New vocabulary includes
the notion of disjointness between classes, cardinality, equality, symmetry of proper-
ties, enumerated classes, amongst others. For a complete introduction to OWL, see
[SWM04].

1.3 Role of ontology mapping in searching

Ontologies can be a big help in the area of searching. One must realise, though, that for
each domain of discourse there will be many ontologies available. This is because of

2

the decentralised nature of the Web: there is noone Ontologyto suit everyone’s needs
(within a domain); rather, various ontologies from different providers will emerge. Fur-
thermore, if a user requests information across different domains, then a software arte-
fact will have to deal with ontologies from these domains. Mechanisms are required in
order to enable information sharing and mappings between ontologies this is commonly
called the interoperability problem.

Broadly speaking there are three architectures relating ontologies to one another
and to instance data [W+01]: a single ontology architecture, a multiple ontology archi-
tecture, and a hybrid architecture. It was clear from past research that only the hybird
architecture is suitable for a large scale web based application. Utilising ontologies will
allow for the idea of semantic searching for a concept rather than a keyword searching.
For this, ontology mapping will have to be developed. Ontology mapping highlights
semantic similarities between ontologies.

1.4 Contributions of the paper

In developing our Semantic Web based search engine, we have put together some prac-
tical solutions to the above three issues.

First, we use RDF graphs to represent abstract ontologies and ontology instances
and then convert each graph into an ontology file using Jena (Jena API, a Seman-
tic Web toolkit from Hewlett-Packard Labs, http://jena.sourceforge.net/). Second, we
modified an ontoligy mapping program by Euzenat [Euz04], which produces a file con-
taining mapping pairs from two input ontology files. Third, a search engine is developed
which takes a set of keywords as inputs, then searches a set of files in the RDF format.
The returned result contains not only the URIs of documents containing the keywords
searched, but also the URIs of documents containing words matched through ontology
alignment. Therefore, the search is more semantic driven.

The rest of the paper is organized as follows. In Section 2, we discuss how to use
Jena to create individual ontologies from ontology graphs. In Section 3, we investigate
ontology mapping approaches and present our method of mapping used in the project.
In Section 4, we introduce our search engine based on the Semantic Web and discuss
our preliminary experimental results, and in Section 5, we conclude the paper.

2 Ontology creation

2.1 Ontology Creation

As mentioned earlier, a simple way to view RDF is as a graph of directed arcs and nodes.
Figure 1 below contains two graphs representing two sets of instance data built from two
ontology structures named asontology3andontology4in the following experiments.
Similar instance data have been generated and used throughout this project. In total, we
created six different ontologies for personal information includingname, date of birth,
and address. The ontology instance on the left has theaddressas a property which
is another resource and has theforename, surnameas separate properties havingliteral
values. The ontology instance on the right, however, takes theaddressas a property with

3

a literal value, and has a propertyfullnameinstead of separating it into two properties.
Resources are shown as ellipses and identified by Uniform Resource Identifier (URI)
and literal values are in rectangles. Also, in Figure 1, we have used the XML qname
form [BPM04] which is how a URI is commonly referred to in RDF/XML serialization.
The part before “:” is called the namespace and the part after “:” is a local name within
the specified namespace.

15
 12
 1984

ns:Dob

http://somewhere/

JohnSpencer

John

ns:Address

12345-6789

Spencer

15 Hill Lane
 NewYork
 7
 May
 1972

715 Main Street

Detroit, 24212-0938,

USA

ns:Dob

http://somewhere/IanSnow

ns=http://www.sbingram.f2s.com/

ontologies/ontology3#

ns=http://www.sbingram.f2s.com/

ontologies/ontology4#

ns:day

ns:year

ns:month
 ns:street

ns:city

ns:day

ns:month

ns:year

ns:hasDob

Ian Snow

ns:fullname

 ns:address

 ns:hasDob

 ns:hasaddress

ns:zipcode

 ns:surname

ns:forename

Fig. 1. Two ontology instances for personal information

Each RDF instance graph needs to be modelled in a proper format for retaining and
searching the information in it. We store each of such graphs in a RDF file with suffix
“.rdf”. The instance data in Figure 1 right is therefore represented by the following file,
with file nameont4ian.rdf, because the underlying ontology used is namedontology4
in our experiment and the person to be modelled is calledIan Snow.

〈?xml version=“1.0”?〉
〈rdf:RDF

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns=“http://www.sbingram.f2s.com/ontologies/ontology4#”〉
〈rdf:Description rdf:about=“http://somewhere/IanSnow”〉
〈fullname〉Ian Snow〈/fullname〉
〈address〉715 Main Street, Detroit, 24212-0938, USA〈/address〉
〈hasDob〉
〈rdf:Description rdf:about=“Dob”〉
〈day〉7〈/day〉
〈month〉May〈/month〉
〈year〉1972〈/year〉
〈/rdf:Description〉
〈/hasDob〉
〈/rdf:Description〉

〈/rdf:RDF〉

2.2 Serialise Ontologies

An ontology can be represented as a graph similar to the ones in Figure 1, except that
the values for literal properties are empty. Once an ontology graph in RDF is created,

4

it needs to be translated into a proper form of ontology. We use OWL as the ontology
representation language, and deploy the methods in Jena API to first translate an on-
tology graph into a Java program which mirrors the graph and then run the program to
create an OWL file with suffix.owl. The following is the ontology file in RDF/XML
serialization form for the instance data on the right in Figure 1.

〈 rdf:RDF
xmlns=“http://www.sbingram.f2s.com/ontologies/ontology4#”
xml:base=“http://www.sbingram.f2s.com/ontologies/ontology4#”
xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”
xmlns:owl=“http://www.w3.org/2002/07/owl#”〉
〈 owl:Ontology rdf:about=“”/〉
〈 owl:Class rdf:ID=“Person”/〉
〈 owl:Class rdf:ID=“Dob”/〉
〈 owl:ObjectProperty rdf:ID=“hasDob”〉
〈rdfs:domain rdf:resource=“#Person”/〉
〈 rdfs:range rdf:resource=“#Dob”/〉
〈 /owl:ObjectProperty〉
〈 owl:DatatypeProperty rdf:ID=“fullname”〉
〈 rdfs:domain rdf:resource=“#Person”/〉
〈 rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema#string”/〉
〈 /owl:DatatypeProperty〉
〈 owl:DatatypeProperty rdf:ID=”Address”〉
〈 rdfs:domain rdf:resource=“#Person”/〉
〈 rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema#string”/〉
〈 /owl:DatatypeProperty〉
〈 owl:DatatypeProperty rdf:ID=“day”〉
〈 rdfs:domain rdf:resource=“#Dob”/〉
〈 rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema#positiveInteger”/〉
〈 /owl:DatatypeProperty〉
〈 owl:DatatypeProperty rdf:ID=“month”〉
〈 rdfs:domain rdf:resource=“#Dob”/〉
〈 rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema#string”/〉
〈 /owl:DatatypeProperty〉
〈 owl:DatatypeProperty rdf:ID=“year”〉
〈 rdfs:domain rdf:resource=“#Dob”/〉
〈 rdfs:range rdf:resource=“http://www.w3.org/2001/XMLSchema#positiveInteger”/〉
〈/owl:DatatypeProperty〉

〈 /rdf:RDF〉

Once ontology models are created and filed, we will need to create some instance
data to facilitate search. The instance data represent the information sources that are
searched using our search engine. Eight information sources were created in our exper-
iment: two based on ontology 1, two based on ontology 2, and one based on each of the
remaining four ontologies. Each information source is a valid RDF file with suffix.rdf
similar to the one below Figure 1.

5

3 Generating Ontology Mappings

Currently, there are many ontology mapping algorithms available but few have a con-
crete implementation. Some are an intrinsic part of the larger process of ontology merg-
ing, whereby two smaller ontologies are merged together to form one larger ontology,
others exist as a standalone component that can be individually run to output a set of
mappings.

Another major difference between ontology mapping methods is with regard to their
level of automation. A zero level of automation indicates that the ontology mapping pro-
cess is done by hand by a knowledge expert. Methods are referred to as semi-automatic
if they require a certain amount of human involvement in the mapping process. Exam-
ples of semi-automatic ontology mapping methods are

To generate the axioms that map one ontology on to another, we use Euzenat’s API
for Ontology Alignment [Euz04]. Euzenat’s program was run from the command line.
The mapping algorithm used wasSubsDistNameAlignment. The threshold for each
mapping was maintained at 0.6 and the output was instructed to be in OWL format.
By default, Euzenat’s API outputs axioms in OWL format including statements (using
〈 owl:imports rdf:resource= “...”/〉) to import the two mapped ontologies. Should this
axiom file be read in with the import statements included, Jena would create a model
that was the union of all three documents (the two ontologies and the axiom file). In a
real-world scenario this union model could be very large, therefore, to save memory on
the machine on which the search engine is deployed, we have altered Euzenat’s API so
that the two import statements are omitted from the mapping output. The command that
is executed from the command line in order to produce each axiom file is as follows:

PROMPT :> java − jar lib/procalign.jar
−i fr.inrialpes.exmo.align.impl.method.SubsDistNameAlignment
file : /C : /pathTo/onto1.owl, file : /C : /pathTo/onto2.owl − t .6
−r fr.inrialpes.exmo.align.impl.renderer.OWLAxiomsRendererVisitor
−o outputSubdirectoryRelativeToCurrentDirectory/outputFilename.owl

In this way, all the mapping axioms are known. It should be pointed out that this
method may only be feasible for a small size application where storing all the mapping
axioms is practical. For a large size of application or for random information searching
on the Semantic Web with a huge number of ontology collections, mapping all the pairs
of ontologies may not be practical. Therefore, alternative mapping approaches that can
generate mappings at run-time would be more appropriate.

4 The search Engine

4.1 System architecture and main functions

To make the search engine as user-friendly as possible, the user view was coded as
JavaServer Pages (JSP). The heart of the system is the implementation of the semantic
search engine. The search engine is in the form of a Java Servlet, which executes on the
server after being invoked by a client request.

6

It is an important point to note that the search engine will not need to have access to
the ontologies themselves, rather, due to the properties associated with the URI naming
scheme, the search engine will simply require access to the axiom files that the mapping
stage has generated. The overall architecture of the system is described below in Figure
2.

Browser

Search.java

search.jsp

results.jsp

errorpage.jsp

URIandModel.java

Document

 Repository

 Ontology

 Mappings

 Repository

 Request

 Response

 Response

Response

Fig. 2. The architecture of the search engine

The semantic search algorithm can be easily divided into three main steps with each
succeeding step dependent on the results of the previous step(s).

(A) Keyword Matching. In this step of the algorithm, the available instance data is
interrogated using a keyword-based matching approach which is similar to how current
search engines work. If a match is found, the URI of the matching field is stored. This
step creates two subsets of the set of available instance data:a Matched set, where
keyword matches were found; and,a Pending set, where no keyword matches were
found.

(B) Find Relevant Mappings. Based on the fact that the ontology mappings have
already been generated, the mappings in the axioms files are searched for instances of
each URI stored in theMatched setfrom (A). Due to the properties intrinsic to the
URI naming system, it is guaranteed that all references in any mapping file to a URI
contained in theMatched setwill be relevant to either thesubject, predicateor objectat
hand. This step creates a subset of the set of mappings.

(C) Interrogate Pending Models with Relevant Mappings. In this final step each
subject-predicate-object statementin each model in thePending setis compared with
each relevant mapping deduced in Step (B). Upon comparison, if a match is found
then the model in thePending setto which the current statement belongs is added to
theMatching setand the step moves on the next model in thePending set. If the set of
relevant mappings is exhausted with no match found in the current model of thePending
set, then the current model in thePending setis not included in the results set.

In addition to the semantic search, we also included the option of an ordinary only
keyword-based search. This functionality is to allow the user to compare the results set
returned from an ordinary keyword-based search with the results set returned from a
semantic search. Some users may not want the semantic search algorithm to execute;
instead wanting exact keyword matches. In this case, enabling this option will increase
the run-time performance of the search engine. The information sources whose URIs
will form the results set will, however, be in the Semantic Web format.

7

4.2 Experimental results

To get a measure of the effectiveness of the semantic search algorithm, we now exam-
ine the contents of each of the created sets after each step in the algorithm. An effective
semantic search is not just one that returns the correct set of results; the semantic match-
ing must also occur on correct subject, predicates or objects. we will also compare the
set of results returned from a keyword-based search to that from a semantic search.

To maintain consistency, the four experiments were carried out in precisely the same
manner. Each experiment has been given an id,Search 1through toSearch 4, and each
search has a corresponding keyword that was entered by the user. These keywords are
Address, postcode, Mark, andphone numberrespectively. There are eight instance data
files generated from six different ontology models for the search engine to search for
information.

Steps (A), (B), and (C) correspond to the different parts of the semantic search
algorithm detailed above. Statements, i.e., subject-predicate-object triples, are enclosed
in square brackets like [subjectURI, predicateURI, objectURI].

Search 1: AddressAfter step (A),Matched Statements(fields in bold are the field
matching occurred on):

[http://somewhere/MarkIngram,
http://www.sbingram.f2s.com/ontologies/ontology1#hasAddress, Address]

[Addresshttp://www.sbingram.f2s.com/ontologies/ontology1#country, “UK”]
[Address, http://www.sbingram.f2s.com/ontologies/ontology2#street1, “18 Knockmoyle”]
[Address, http://www.sbingram.f2s.com/ontologies/ontology2#street1, “18 Knockmoyle”]
[Address, http://www.sbingram.f2s.com/ontologies/ontology3#zipcode, “12345-6789”]
[http://somewhere/IanSnow,

http://www.sbingram.f2s.com/ontologies/ontology4#address, “715 Main Street, Detroit,
24212-0938, USA”]

[Address, http://www.sbingram.f2s.com/ontologies/ontology5#city, “Oslo”]
[Address, http://www.sbingram.f2s.com/ontologies/ontology6#country, “USA”]

Pending: none
After step (B)Mappings: none
After step (C)Statements added to Matched: none
URIs returned: Keyword-based search (left): Semantic search (right) :

C:\repository\ont1mark.rdf file:\C:\repository\ont1mark.rdf
C:\repository\ont1sam.rdf file:\C:\repository\ont1sam.rdf
C:\repository\ont2jenna.rdf file:\C:\repository\ont2jenna.rdf
C:\repository\ont2nicola.rdf file:\C:\repository\ont2nicola.rdf
C:\repository\ont3john.rdf file:\C:\repository\ont3john.rdf
C:\repository\ont4ian.rdf file:\C:\repository\ont4ian.rdf
C:\repository\ont5jack.rdf file:\C:\repository\ont5jack.rdf
C:\repository\ont6suzanne.rdf file:\C:\repository\ont6suzanne.rdf

Search 2: postcodeAfter step (A),Matched Statements(fields in bold are the field
matching occurred on):

8

Fig. 3. The screen shot of searching result ofpostcode

[Address,http://www.sbingram.f2s.com/ontologies/ontology1#postcode, “BT41 1HT”]
[Address,http://www.sbingram.f2s.com/ontologies/ontology1#postcode, “BT41 1HT”]
[Address,http://www.sbingram.f2s.com/ontologies/ontology2#postcode, “BT41 4HE”]
[Address,http://www.sbingram.f2s.com/ontologies/ontology2#postcode, “BT41 4HE”]

Pending:

file:\C:\repository\ont3john.rdf
file:\C:\repository\ont4ian.rdf
file:\C:\repository\ont5jack.rdf
file:\C:\repository\ont6suzanne.rdf

After step (B)Mappings:

1. [http://www.sbingram.f2s.com/ontologies/ontology1#postcode,
2. http://www.w3.org/2002/07/owl#equivalentProperty,
3. http://www.sbingram.f2s.com/ontologies/ontology2#postcode]
4. [http://www.sbingram.f2s.com/ontologies/ontology1#postcode,
5. http://www.w3.org/1999/02/22-rdf-syntax-ns#type,
6. http://www.w3.org/2002/07/owl#DatatypeProperty]
7. [http://www.sbingram.f2s.com/ontologies/ontology1#postcode,
8. http://www.w3.org/2002/07/owl#equivalentProperty,
9. http://www.sbingram.f2s.com/ontologies/ontology3#zipcode]
10. [http://www.sbingram.f2s.com/ontologies/ontology2#postcode,
11. http://www.w3.org/2002/07/owl#equivalentProperty,
12. http://www.sbingram.f2s.com/ontologies/ontology1#postcode]
13. [http://www.sbingram.f2s.com/ontologies/ontology3#zipcode,
14. http://www.w3.org/2002/07/owl#equivalentProperty,
15. http://www.sbingram.f2s.com/ontologies/ontology1#postcode]
: (many more lines are deleted which give out all the mapping pairs)

After step (C)Statements added to Matched:

[Address, http://www.sbingram.f2s.com/ontologies/ontology3#zipcode, ”12345-6789”]
[Address, http://www.sbingram.f2s.com/ontologies/ontology5#areacode, ”793B0NN”]
[Address, http://www.sbingram.f2s.com/ontologies/ontology6#zipcode, ”09893-2812”]

9

URIs Returned: Keyword-based search (left), Semantic search (right)

C:\repository\ont1mark.rdf file:\C:\repository\ont1mark.rdf
C:\repository\ont1sam.rdf file:\C:\repository\ont1sam.rdf
C:\repository\ont2jenna.rdf file:\C:\repository\ont2jenna.rdf
C:\repository\ont2nicola.rdf file:\C:\repository\ont2nicola.rdf

file\C:\repository\ont3john.rdf
file\C:\repository\ont5jack.rdf
file:\C:\repository\ont6suzanne.rdf

Search 3: Mark After step (A)Matched Statements:(fields in bold are the field matching oc-
curred on)

[http://somewhere/MarkIngram , http://www.sbingram.f2s.com/ontologies/ontology1#hasDob,
Dob]

Pending:

file:/C:/repository/ont1sam.rdf file:/C:/repository/ont2jenna.rdf
file:/C:/repository/ont2nicola.rdf file:/C:/repository/ont3john.rdf
file:/C:/repository/ont4ian.rdf file:/C:/repository/ont5jack.rdf
file:/C:/repository/ont6suzanne.rdf

After step (B)Mappings: none
After step CStatements added to Matched: none
URIs Returned: Keyword-based search (left), Semantic search (right)
C:\repository\ont1mark.rdf file:\C:\repository\ont1mark.rdf
Search 4: phone numberAfter step (A): Matched statement: none
Pending:

file:\C:\repository\ont1mark.rdf file:\C:\repository\ont1sam.rdf
file:\C:\repository\ont2jenna.rdf file:\C:\repository\ont2nicola.rdf
file:\C:\repository\ont3john.rdf file:\C:\repository\ont4ian.rdf
file:\C:\repository\ont5jack.rdf file:\C:\repository\ont6suzanne.rdf

After step (B)Mappings: none
After step (C)Statements added to Matched: none
URIs Returned: Keyword-based search:none; Semantic search:none

4.3 Discussion of Results

The searches carried out were chosen specifically to show the search algorithm working
in four discrete scenarios:Search 1shows the situation when every available informa-
tion source has a keyword matching to the user’s query.Search 2shows the situation
when some of the available information sources contain a matched keyword and the
results set has to be augmented by inspection of ontology mappings.Search 3shows
the situation if only one of the available information sources has a keyword match and,
even after inspection of the ontology mappings, no other matches can be found.Search

10

4 shows the situation when the user’s query does not match anything in any of the
available information sources.

In Search 1, once we found one matching axiom between two ontologies, we stop
finding other matchings, since one matching axiom is enough to decide that the related
instance data should be included in the set of results. It should be pointed out that the
matched axioms returned in this search changes from ontology to ontology. This is due
to the practical implementation of Jena. Jena stores statements as triples in a hash table.
It does not preserve order. Model.listStatements() in Jena iterates over a hash table and
returns things in whatever order they are in the hash table. Blank nodes get internal
identifiers - this is one cause of hash order variation. It is not even guaranteed the same
order reading one file across different runs of our application or within two readings of
a file in the same application run. Nevertheless, from the point of view of search, the
end result is the same since we only need to find relevant URIs.

For each experiment it can be seen that for a keyword-based search the set of re-
sults returned to the user contains exactly the same number of URIs as there were key-
word matches after step (A) of the semantic search algorithm. This is precisely what
is to be expected because step (A) of the algorithm is simply a naive keyword search
of the available information sources. Furthermore, it can be seen that the results set
for a semantic search contains the URIs expected from the keyword search as well as
the URI of any information source that had a matching statement listed in step (C) of
the search algorithm. Therefore, the result set of the semantic search is the union of
the keyword-based search results set and the results set created after inspection of the
available ontologies.

{SemanticSearchRS} = {KeywordSearchRS} ∪ {OntologySearchRS}
This is precisely what a semantic search is aimed to achieve: not only will a user’s

search return URIs based on keyword matches but also returned will be URIs based on
concepts that are deemed similar to the keyword matches by ontology mappings.

5 Conclusions

We have come across two semantic search engines during the project. One is based
on [Euz04] (http://align.deri.org:8080/deri/align.jsp). Unfortunately, this search engine
has been down for some time, and we were unable to get an access to it in the last few
months. The other semantic search engine can be found at http://pear.cs.umbc.edu/swoogle/.
Swoogle does not carry out any ontology mapping; instead it is a keyword-based search
engine tailored specifically for documents encoded in the Semantic Web format. Like
Google, Swoogle crawls the web for Semantic Web documents and indexes them.
Swoogle provides a way for Semantic Web developers and researchers to check to see
whether a concept has already been defined or not. As stated by the author’s of Swoogle:
“... today’s search engines deal with SWDs [Semantic Web Documents] poorly, if at
all, since they have been developed to process text documents. Most make no attempt
to parse XML documents into appropriate tokens and none take advantage of the struc-
tural and semantic information encoded in a SWD. A search engine customized for
SWDs, especially for SWDs that define or extend ontologies, might be very useful for
both semantic web developers as well as software agents, tools and services.”

11

In this paper, we reported a preliminary implementation of a semantic search engine
which utilizes a number of independent software packages (e.g., Jena, and Euzenat’s
ontology mapping). The search engine returned correct results sets within the restricted
domain of discourse of personal information but dealt mainly with equivalence relations
between concepts.

In this project, the information sources used were very small and the investigation
only dealt with similarities in the strings and/or substrings of subjects, predicates and
objects. Information sources that included subclass and super class relationships, cardi-
nality variations and enumerations would verify the robustness of the search engine in
our future development.

To make the search engine more scalable, the generation of ontology mappings
phase would need to be investigated more closely. If the search engine is to be used
for a small medical research lab where the information sources grew slowly and the
ontology repository even more slowly, then the generation of ontology mappings phase
could remain as it is. However, if this semantic search engine is for general release
on the Internet, then a much more automatic ontology mapping generation process is
required. Mapping on the semantic similarities of conepts in different natural languages
can also be incorporated. This will be another focus of our next step of research.

References

[BPM04] P Biron, K Permanente, and A Malhotra. XML Schema Part 2: Datatypes Second
Edition. http://www.w3.org/TR/xmlschema-2/#QName, 2004.

[Euz04] J Euzenat. An API for ontology alignment. http://co4.inrialpes.fr/align/align.pdf,
2004.

[ESt04] M Ehrig and S Staab. Quick ontology mapping (QOM).GI Jahrestagung(1):356-
361, 2004.

[ESu04] M Ehrig and Y Sure, Ontology mapping: An integrated approach.
http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/2004mappingTR.pdf.

[Gru93] T Gruber. A translation approach to portable ontology specifications.knowledge
Acquisition, 5:199-200, 1993.

[Li03] J Li. A lexicon-based ontology mapping tool.Conference of Information Interpre-
tation and Integration, 2003.

[MMM04] F Manola, E Miller, and B McBride. RDF Primer. http://www.w3.org/TR/rdf-primer.
[NM03] N Noy and M Musen. The PROMPT Suite: interactive tools for ontology merging

and mapping. ttp://www-smi.stanford.edu/pubs/SMIReports/SMI-2003-0973.pdf,
2003.

[SWM04] M Smith, C Welty and D McGuinness OWL Web ontology language guide.
http://www.w3.org/TR/owl-guide/.

[Stu03] G Stumme et al. The Karlsruhe view on ontologies. Technical Report, University of
Karlsruhe, Institute AIFB, 2003.

[Su02] X Su. A text categorisation perspective for ontology mapping.
http://www.idi.ntnu.no/ xiaomeng/paper/Position.pdf, 2002.

[Su03] X Su. Ontology mapping through analysis of model extension.Proc. of CAiSE’03.
[W+01] H Wache, T Voegele, U Visser, H Stuckenschmidt, G Schuster, H Neumann, and

S Huebner. Ontology-based integration of information - A survey of existing ap-
proaches. IJCAI’01 Workshop on Ontologies and Information Sharing, 108-117.
2001.

12

